Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RMmastein

Ma-Stein operator


Description

RMmastein is a univariate stationary covariance model depending on a variogram or covariance model on the real axis. The corresponding covariance function only depends on the difference h between two points and is given by

C(h, t)= [ Gamma(nu + phi(t))Gamma(nu + delta) ] / [Gamma(nu + phi(t) + delta) Gamma(nu) ] W_{nu + phi(t)}(|h - Vt|)

if φ is a variogram model. It is given by

C(h, t)= [ Gamma(nu + phi(0)-phi(t))Gamma(nu + delta) ] / [Gamma(nu + phi(0)-phi(t) + delta) Gamma(nu) ] W_{nu + phi(0)-phi(t)}(|h - Vt|)

if φ is a covariance model.

Here Γ is the Gamma function; W is the Whittle-Matern model (RMwhittle).

Usage

RMmastein(phi, nu, delta, var, scale, Aniso, proj)

Arguments

phi

an RMmodel on the real axis

nu

numerical value; positive; smoothness parameter of the Whittle-Matern model (for t=0)

delta

a numerical value; δ must be greater than or equal to half the dimension of h

var,scale,Aniso,proj

optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Details

See Stein (2005), formula (12).

Instead of the velocity parameter V in the original model description, a preceding anisotropy matrix is chosen appropriately:

matrix(c(A, -V, 0, 1), nr=2, by=TRUE)

A is a spatial transformation matrix. (I.e. (x,t) is multiplied from the left on the above matrix and the first elements of the obtained vector are interpreted as new spatial components and only these components are used to form the argument in the Whittle-Matern function.) The last component in the new coordinates is the time which is passed to phi. (Velocity is assumed to be zero in the new coordinates.)

Note, that for numerical reasons, ν+φ+d may not exceed the value 80.0. If exceeded the algorithm fails.

Value

RMmastein returns an object of class RMmodel.

Author(s)

References

  • Ma, C. (2003) Spatio-temporal covariance functions generated by mixtures. Math. Geol., 34, 965-975.

  • Stein, M.L. (2005) Space-time covariance functions. JASA, 100, 310-321.

See Also

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make plotthem all random again
model <- RMmastein(RMgauss(), nu=1, delta=10)
plot(RMexp(), model.mastein=model, dim=2)

x <- seq(0, 10, 0.1)
plot(RFsimulate(model, x=x, y=x))

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.