Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RMmodelsTailcorrelation

Covariance models valid for max-stable random fields


Description

This page summarizes the models that can be used for tail correlation functions.

Details

The following models are available:

Completely monotone functions allowing for arbitrary scale

RMbcw Model bridging stationary and intrinsically stationary processes for alpha <= 1 and beta < 0
RMdagum Dagum model with β < γ and γ ≤ 1
RMexp exponential model
RMgencauchy generalized Cauchy family with α ≤ 1 (and arbitrary β> 0)
RMmatern Whittle-Matern model with ν ≤ 1/2
RMstable symmetric stable family or powered exponential model with α ≤ 1
RMwhittle Whittle-Matern model, alternative parametrization with ν ≤ 1/2

Other isotropic models with arbitrary scale

RMnugget nugget effect model

Compactly supported covariance functions

RMaskey Askey's model
RMcircular circular model
RMconstant identically constant
RMcubic cubic model
RMgengneiting Wendland-Gneiting model; differentiable models with compact support
RMgneiting differentiable model with compact support
RMspheric spherical model

Anisotropic models

None up to now.

Basic Operators

RMmult, * product of covariance models
RMplus, + sum of covariance models or variograms

Operators related to process constructions

RMbernoulli correlation of binary fields
RMbrownresnick tcf of a Brown-Resnick process
RMschlather tcf of an extremal Gaussian process / Schlather process
RMm2r M2 process with monotone shape function
RMm3b M3 process with balls of random radius
RMmps M3 process with hyperplane polygons

See RMmodels for cartesian models.

Author(s)

References

  • Strokorb, K., Ballani, F., and Schlather, M. (2015) Tail correlation functions of max-stable processes: Construction principles, recovery and diversity of some mixing max-stable processes with identical TCF. Extremes, 18, 241-271

See Also

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
RFgetModelNames(type="tail")

## an example of a simple model
model <- RMexp(var=1.6, scale=0.5) + RMnugget(var=0) #exponential + nugget
plot(model)

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.