Identify for each coefficient of a model the corresponding variable
It will also identify interaction terms and intercept(s).
model_identify_variables(model) ## Default S3 method: model_identify_variables(model) ## S3 method for class 'lavaan' model_identify_variables(model) ## S3 method for class 'aov' model_identify_variables(model) ## S3 method for class 'clm' model_identify_variables(model) ## S3 method for class 'clmm' model_identify_variables(model) ## S3 method for class 'gam' model_identify_variables(model)
model |
a model object |
A tibble with four columns:
term
: coefficients of the model
variable
: the corresponding variable
var_class
: class of the variable (cf. stats::.MFclass()
)
var_type
: "continuous"
, "dichotomous"
(categorical variable with 2 levels),
"categorical"
(categorical variable with 3 or more levels), "intercept"
or "interaction"
var_nlevels
: number of original levels for categorical variables
Other model_helpers:
model_compute_terms_contributions()
,
model_get_assign()
,
model_get_coefficients_type()
,
model_get_contrasts()
,
model_get_model_frame()
,
model_get_model_matrix()
,
model_get_model()
,
model_get_nlevels()
,
model_get_n()
,
model_get_offset()
,
model_get_response()
,
model_get_terms()
,
model_get_weights()
,
model_get_xlevels()
,
model_list_contrasts()
,
model_list_terms_levels()
,
model_list_variables()
Titanic %>% dplyr::as_tibble() %>% dplyr::mutate(Survived = factor(Survived, c("No", "Yes"))) %>% glm( Survived ~ Class + Age * Sex, data = ., weights = .$n, family = binomial ) %>% model_identify_variables() iris %>% lm( Sepal.Length ~ poly(Sepal.Width, 2) + Species, data = ., contrasts = list(Species = contr.sum) ) %>% model_identify_variables()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.