The beta distribution for fitting a GAMLSS
The functions BE()
and BEo()
define the beta distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. BE()
has mean equal to the parameter mu
and sigma
as scale parameter, see below. BEo()
is the original parameterizations of the beta distribution as in dbeta()
with
shape1
=mu and shape2
=sigma.
The functions dBE
and dBEo
, pBE
and pBEo
, qBE
and qBEo
and finally rBE
and rBE
define the density, distribution function, quantile function and random
generation for the BE
and BEo
parameterizations respectively of the beta distribution.
BE(mu.link = "logit", sigma.link = "logit") dBE(x, mu = 0.5, sigma = 0.2, log = FALSE) pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) rBE(n, mu = 0.5, sigma = 0.2) BEo(mu.link = "log", sigma.link = "log") dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE) pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE) qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
mu.link |
the |
sigma.link |
the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The original beta distribution is given as
f(y|a,b)=1/(Beta(a,b)) y^(a-1)(1-y)^(b-1)
for y=(0,1), α>0 and β>0. In the gamlss
implementation of BEo
α=μ and β>σ. The reparametrization in the function BE()
is
mu=a/(a+b) and sigma=(1/(a+b+1))^0.5
for mu=(0,1) and sigma=(0,1).
The expected value of y is mu and the variance is sigma^2*mu*(1-mu).
BE()
and BEo()
return a gamlss.family
object which can be used to fit a beta distribution in the gamlss()
function.
Note that for BE
, mu
is the mean and sigma
a scale parameter contributing to the variance of y
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family
, BE
, LOGITNO
, GB1
, BEINF
BE()# gives information about the default links for the beta distribution dat1<-rBE(100, mu=.3, sigma=.5) hist(dat1) #library(gamlss) # mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma #fitted(mod1)[1] #fitted(mod1,"sigma")[1] plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999) plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999) plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999) plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999) dat2<-rBEo(100, mu=1, sigma=2) #mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma #fitted(mod2)[1] #fitted(mod2,"sigma")[1]
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.