Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

BE

The beta distribution for fitting a GAMLSS


Description

The functions BE() and BEo() define the beta distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). BE() has mean equal to the parameter mu and sigma as scale parameter, see below. BEo() is the original parameterizations of the beta distribution as in dbeta() with shape1=mu and shape2=sigma. The functions dBE and dBEo, pBE and pBEo, qBE and qBEo and finally rBE and rBE define the density, distribution function, quantile function and random generation for the BE and BEo parameterizations respectively of the beta distribution.

Usage

BE(mu.link = "logit", sigma.link = "logit")
dBE(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
rBE(n, mu = 0.5, sigma = 0.2)
BEo(mu.link = "log", sigma.link = "log")
dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)

Arguments

mu.link

the mu link function with default logit

sigma.link

the sigma link function with default logit

x,q

vector of quantiles

mu

vector of location parameter values

sigma

vector of scale parameter values

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required

Details

The original beta distribution is given as

f(y|a,b)=1/(Beta(a,b)) y^(a-1)(1-y)^(b-1)

for y=(0,1), α>0 and β>0. In the gamlss implementation of BEo α=μ and β>σ. The reparametrization in the function BE() is mu=a/(a+b) and sigma=(1/(a+b+1))^0.5 for mu=(0,1) and sigma=(0,1). The expected value of y is mu and the variance is sigma^2*mu*(1-mu).

Value

BE() and BEo() return a gamlss.family object which can be used to fit a beta distribution in the gamlss() function.

Note

Note that for BE, mu is the mean and sigma a scale parameter contributing to the variance of y

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

See Also

Examples

BE()# gives information about the default links for the beta distribution
dat1<-rBE(100, mu=.3, sigma=.5)
hist(dat1)        
#library(gamlss)
# mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma 
#fitted(mod1)[1]
#fitted(mod1,"sigma")[1]
plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999)
plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999)
dat2<-rBEo(100, mu=1, sigma=2)
#mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma 
#fitted(mod2)[1]
#fitted(mod2,"sigma")[1]

gamlss.dist

Distributions for Generalized Additive Models for Location Scale and Shape

v5.3-2
GPL-2 | GPL-3
Authors
Mikis Stasinopoulos [aut, cre, cph], Robert Rigby [aut], Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb], Fernanda De Bastiani [ctb], Raydonal Ospina [ctb], Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stocker [ctb], Jens Lichter [ctb], Stanislaus Stadlmann [ctb]
Initial release
2021-03-08

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.